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TO AERODYIXAMEO EXCZlWI~* 

By Walter E. Arnoldi 

The flexural tibratlon of a rotating propeller blade with clamped 
shsnk ie snalyzed with the object of presenting, in matrix form, equations 
for the elastic bending mcunents in forced vibration resulting fraan aerw 
dynamic forcea applied. at a fixed multiple of rotational speed. Matrix 
equations are also derived which define the critical speeds end mode 
shapes for any excdtatian order. and the relation between critical. s-peed 
and blade angle. Reference is gI.ven to stenderd works on the nuaerfcal 
solution of matrix equations of the forms derived. 

The use of a segmented blade as en approxFmation to a continuous 
blade provides a simple meens for obtaw the matrix solution from the 
titegral equation of equilibrium, so that, In the numericsl application 
of the method presented., the several matrix errays of the basic physical 
characteristics of the propeller blade are of sdztple form, end their 
simglicity is preserved until, with the solution in si&t, numerIcal 
manipulations w-&U- In matrw algebra yield the desired critical 
speeds and mode shapes framwhich the vibration at sny operating condition 
may be smthesized. 

A close correspandence between the familiar Stodola method and the 
matrix method ie pointed out, indicating that any features of novelty 
are cheracteristic not of the anQ-tfc&L procedure but only of‘the 
abbreviatim, condensatim, and efficient orgenizatian of the numerfcal 
procedure made poss&ble bg the use of classical matrix theory. 

. 
This report presents a theoretical analysis of the flexural vibra- 

tian of an aircraft propeller blade subjected to harmcnic aerodynemic 
exciting forces at a fixed multiple of propeller rotationel frequency. 

*This report is a reproduction of Hamilton Standard Propellers* 
report No..HSP-613, of Bec&ber ll, 1947, tith scme slight 
modifications to confo~mcre nearly to lUCA form. 

UNCLASSIFIED 
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Moat direct practical application is found in the calculation of response 
to rotational frequency excitation below the first mode reaonent frequency, 
but the analysis also provldes a means for studying critical speeds at 
any frequency order. However, since current interest ia centered on the 
former application, coupling of blade bending and torsion is neglected as 
being of little im-po.rtance when operating fm below the first torsional 
natural frequency, and aRmping is ltiewies i@ored. Initial offset and 
sweep are also neglected, although their effacts cannot be dismissed as 
a generality. 

The propeller blade in thfs analysis is clamped at the shank, that t 
is, constrained so that at some fixed locatlan nea the center of rotation 
only unfform rotatianal motion 1s possible. This conditfon of end fixity 
is chosen in accordance with the object of applying the results of the 
analysis to the partfc.ular case of vibrat 

? 
in response to air stream 

angularity, where a propeller of three 0 more blades vibrates in an 
unsmtricsl mode which fulfills this canditicm. The 'reactionle8s modes" 
occurring in propellers of, four or more blades are also covered by thfs 
boundary condition. The system is furthermore assumed to be linear, 
with smell vibratory displacements, and simple bending theory is used, 
since the twist in canventi& propeller b&38 &e.si@s is moderate. 

The dffferential equations of equilibrium sre first derived and 
transformed into integral equations, and they are then examined in the 
form of a matrix equation for a sesented blade, which permite the 
avaluation of vibratory response, critic&l. speeds, and normal modes by 
simple cLEtssical methods which are particularly attractfve because the 
solution in numerical form fallows the symbolic form very closely. 

It must be reco@pized at the outset that the mathematical description 
of the vibration of a twisted, rotating, tapered beam, subjected to 
distributed vibratory load-, is essentially a complicated process, anal. 
that care must be taken to avoid dealing with eqressions so cumbersom8 
and involved In notation that the physical meenings of the various terms 
are completely hidden. The analysis here presented attempts to avoid 
such difficulties by using the concfse abbreviations provided by stiple 
matrix algebra, setting up matrix arrays Of physical quantities wherever 
possible, and separating the operations of integration end differentiation 
from the physical quantities by the use of operational symbols in matrix 
form. It is thus possible to avoid writ- large arrays of simultaneous 
equations, replete with multiple integrals, whichmight otherwise tondto 
disguise, through their complexity, the basic manipulations leading to a 
solution. By ueing concise matrix terminology, the problem is reduced to 
a claasfcal form of equation which can easily be solved to yield such 
fundamental Formation as the critical speeds and normal modes of the 
vibrating system. As In stmpler, nonrotating systems, a knowledge of the 
normal modes and critical frequencies is sufficient to synthesizd the 
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respcmse of the system to an aermc excftation at any operating 
conaition. 
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blade 
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blade 

station radius, inches 

tip radius, inches 

vibratory dfsplacement, mdar, &so matrix colwm, inches 

circular frequacy of vibration, radians per secad 

circulez frequerncg of rotatim, radians per seccmd 

k3sperunitlengbhof 
seconds2 per inch2 

Yomg'smodunlB, pouRdfl 

blade i3ec 
t 

icm moment of 
inches 

blade, also diagmalmatrix, pound- 

per inch2 

inertia, scalar, also diagcmalmatrix, 

blade secticm engle from plane of rotatim, m&lens 

blade angle at reference staticm, radiens 

twist matrJx of sin 8 and cos 8 

section &ear force, pounds 

sectiosl bend3ng mame, scaltu, also coluran nla.tr*, pound- 
inches 

centrifu&tmsim, scalar, also diagcrnalmatrir, pounds 

applied. air force per unit length, scelaz, &o column matrix, 
pounds per inch 

integral operator, scalar, also matrti ~a defined. later, inches 

derivative operator, scalar, alao matrix as defined later, incheBl 

altered centrTfugd. tension matrix, &C, pound-seconds2 
n2 

frequency matrix, seconds4 
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P frequency order, c$l 

vP 
c 

frequency order matrix 

curvature, scalar, also column matrix, inches-1 

n aumber of blade segments 

I unit matrix 

h. scalar frequency parameter in matrix equations, secondi& - 

k modal coluiml ( momenta), pound-inches 

lc modalrow( curvatures), inches& 

u dyz3amJc matrix, seconds+ 

J orthogmal unit matrti, J2 = -1 

Subscripts and matrix configurations are explatied in the text and 
alw-• Matrix notation follows the cczrventions generally adopted ti 
reference 1, where possible. 

e 

l . 

The forces and momenta acting upon a differential. blade element, 
in the pm of rot&Ian, are shown by figure 1. The differential 
equations of equilibrium axe found by separately sunrmlng horizontal 
forces, vertical forces, andmamn.ta franthis diagram. Equilfbrium of 
forces in the direction of the x-axis is expressed by 

dT + Q2px dx = 0 (0 

and in the y-Urection, by 

&ydx+dQ+Fti+ (~)i12px dx + d 

while the moments are summed by 

Qdx+dM=O 

(21 

(3) 
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framwhich may be written the three dfffersntial equatims of 
equilibrium, 

dT z + n2Px = O 

Q+$O 

(4) 

Equaticm (4) may be integrated to obtain ti6 centrifugal tension 
atanypoint alor&theblade 

03 

T = Cl2 
2 

s 
px dx- 

X 
(71 

Integrating equaticm (6) and substituting the expression for Q, 
derived,by IntegratFng equation (5) gives 

M= (02 + uiq s” dx jz py dx +[ ax 4' F dx - [ Tg dx (8) 
X X 

For vibratim normal to the plane of rotation, the equilibrium 
diagram of figure 1 would be altered only by the change In directian 
of the centr~ force, Q2px dx, w3zich would then be parallel to 
the x-exie. This eIldmh.itee the iiourth term of 
vibration normal to the plane of rotation. The 
ie then 

equation (2), for 
equatim of moments 
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tiere it must be understood that the M, y, and F sy~&ols represent 
different quantities from those used In equation (8). 

Now cmden~e the notation by intrcducing the following operational 
symbols: 

Since eq~ticms (8).and (9) shall henceforth be used as s+iltaneous 
equations, introduce also subscripts p and r .to denote quantities 
referred, respectively, to vibrations mr&iL to the plane of rotation 
(pmallel centrifugal field) and in the plane of rotatim (radial 
centrifugal field).. Equaticms (8) and (g), in reverse order, than 
became 

I$ = &&yp+ S2Fp-STDyp 

(10) 

Further to condense these ewations, itfe conveniantto apply a 
matrfx notation, in which 

The symbols, p, T, S, end D may be used either &B matrices or as 
matrix elements without ambiguity, since the equations in whfch they 

. 

_ .-.-. 

. 

. 
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wi.XLbeusedwillma;ke thetimeanings evident. Thematrixequatianis 
thus 

Mpr = W2pyw + S2Fpr - SQP 

In order to solve this equation for bending mcmmts in term of applied. 
air load&, it 18 mxesssry first to 6kkLna 
means of ELnaddItionKL 

te th6 deflections;ypr, by 
nmnent-deflectim relaticmrrihip. 

. 

Simple bending theory pro-v-ides the scalar relaticxt, 

M=EIC 

, 
which applies to sn untwisted beam, where bending takes place about cme 
of the principal exes of inertia. This relation till be used in the 
twisted propeller blade, but ft will be necessary to transform the 
moment endcurvatuxe froanthe twistedcoordlna tee deqined by the principti 
axestotheuntxkt6d pr coordInatea. Denot3ng moments about the 
minor sxis.of inertia by the subscri t, f (for "flatwise" bend-), and 
mrrmsnts about the maJor a&s by e P for "edgmise" bendIng>, the 
coordinate trsnsformatim mey be written as foILLows, referring to the 
orientation of exe8 shown In figure 2. 

I 

where 

8= 

Mpe =0Mpr 

cos 8 --eti 8 

sin e 1 co8 8 

llh6 curvature, expressed as a vector column matrix, may likewise be 
trsnsfozmed tithe semefashion- 
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and these coordkate transformations may be fntroduced Into t&e mcqmnt- 
curvature relation, 

'pr = C1(EJ+e)-lE+ 

But the curvature, in unttisted coordinates, is given by the second 
derivakive of the defZLectim. 

cpr = +ypr 
Therefore 

The curva.tures may be Intemated to obtain deflecticma, usFng the 
operator, 

D-'f(x) = 
s 

X 

f(x) dx 
0 

which, although en titegml operatar, differsfkamthe S already 
defined, due to the necessity for integrating curvature and slope frcm 
the origin outwaxd. The desired relatfon between nunumt and deflection 
is then 

. 

c 

. 
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Substituting this into equation (II) yields 

MPr = qS2pI&4(~e)-~I$r + $Fpr - S++3-l@f6)-k$,r 

or 

This is en integral eqmtion in operational.matrix form, with x as sn 
independent variable, relating elastic bending monnenta to applied aero- 
dynamic forces. It can be solved by my of several methods, but this 
presentation will be confined to the discussion of a solution 
obtained by considering the propeller blade divided Vito a fdnite &tier 
of hinged segments. This treamt has the adventage of skj@icity B 
directly reducing the matrix operators, S, D, end ~-1 to convenient 
numerical form. 

-BLADE 

Canaider the application of equation (12) to a propeller blade 
divided Into n equal segments, having its distributed mass divided 
proportionately among the hinge poiats and having parallel springs 
across each hinge to represent the edgewise asd flatwise flexibilities. 
The operatoTs, S, D, md +; can then be defined ti series form, as 
follows: 

s 

1 
sf (Xi> = f(x) dx = ICI f&J k 

xi j=i 

D-lf (xi) = s” f(x) dx = 
0 

Fi f(xj) Ax 
= 
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The subscript nmenclature associated with these definiticms is 
described by figure 3. Note that, because the mclmazlts in the segwmted 
system are each me station removed fram the forces which they equilibrate 
in accordance with equations (l), (2), amI (3), the subscripts for 
rmnents and inertiaa differ from the subscripts for masses, deflectims, 
air forces, and centrifugal tensions at each station. 

There may be written n simultaneous equatiais, corresponding to 
the n hinge points, in place of each of the two simultaneous equations (10.). 
lnstead of writing them separately, they will be combined into a single 
matrix equation by using the following conventions. 

P = 

P10-0 

OP,--0 

a --- 

0 O-P1 

FpW 

' yP = , Fp = Fp'p(+) 

i i 

, 

Fp(Xn) 

111-i 

011-1, 

1 
001-l 

. 
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i 

SWilar definitims apply to the r+oordInates. Note that T1 is 
%ruly the matrix reciprocal of D. Equaticms (10) then are simultsneous 
matrix equations of n-order, end equation (12) will involve second-order 
matrices w-ith n-order matrix elements, or, more concisely, equat1.m (12) 
willbecme a ~+rdermatrixequation. As enexample, the ixtstmatrix 
now became6 

e= 

1 COB 0 0 0 el ~08 0 0 0 e2 co8 0 0 0 e3 - - - - COB 0 0 0 e& I I I --SW 0 0 el -sine2-- 0 0 -- - - - - +Jine, 0 0 

y---s -- -- - 
sin el 0 0 

I 
GO8 8, 0 -- 0 

.L 

0 COB e, - - 0 0 81ne2 - - 0 I 

I 

i- - - 
- - I 

0 0 - - sine& 
I 

snd the stiffne88 matrix is 

Ife = 

Lpw 0 - - - I 
0 Ma-- - 

I 
- . - a - 

- - I 

- - Fe&l I 

0 0 

0 0 

0 0 

-- - 

-- - 

- - COB en 

- - 

- - 

- - 

- - 

- - 
-~~~~~ 

0 0 -- - 
I 

r&x(-J 0 - - - 

0 0 ry- - 

I 

0 I,(d-- - 

- - - - 

- - I - - 

- - 
I 

- - ~&R-l 
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It is important to note that the reciprocals indicated in equation (12) 
are also of simple form, ~9 4 being the kensposed of 8, end (Ife)-1 
being a diagonal matrix of the reciprocels of the individual inertia 
elements. Furthermore, D-l is the transposed of S. 

Since, in propeller vibration studies, the btiing moments referred 
to principal sxes me direct* related to measurable quantities, equa- 
tion (12) shall be remitten in the fe coordinates, tience 

Mpe = 8(&@ - STF')&(EIfe)-I.Mp, + &QwlFfe (131 

In solving this equaticm for.resonsnt conditicms it will be necessary 
either to choose a fixed rotational speed and find the natural frequencies 
or to choose a propeller vibration order (multiple of rotations2 spesd) 
and find the ~ritfcal speeds. Adopting the latter procedure and 
letting P = a, write 

f 
$0 -- 0 I 0 - - 

0 p2 -- 0 
I 

0 - - 

- - 

p2- --- 

- - (p2+1) 0 - - 

0 0 0 
-I _ 

(9 +l) - - 

- - - - 

- - - (p2+1) 

T = n% 

Also abbreviating the air moment COluMtl, 

&Qecaj = @&+B fe 

gives 

%e = @@(JJpS2pD-e - EWF1)g--l(ELpe)-lMfe + *eta) 

= *2qJp 

t 

c 

. 

.- 
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u=:8 CV 2pDQ - sTr-+3-1(q*)-l 

Ke = X(M - u,-1pe(a) 

13 

(14) 

Nimerical quantities can be substituted into equatim (151, and 
thebending mmmnts caused. by applied air moments at a predetermined 
rotationaL speedsndfrequencyardermaybe directly calculated. 
Another form of solution, obta3ned by the use of Sylvester*8 Theorem, 
will often be more useful. This theorem, which provides a series 
expansion of a matrix polynmial, applied to equatian (15) yields 

(15) 

(16) 

where Mlr) 1aanormeLmode -tCqOnentOf Mp6 (a) , obtmd in 
terms of the model row and CO~XIDID associated tith a latent root, &, 
from the relations, 

(&I - u)kr = 0 (171 

Rr(x-$-u)=o (18) 

-6 subscript r .is used henceforth to denote my of the 2n modes of 
the se-ted system. This preserves similarity with matrix notation 
in reference 1 end should cause no ambiguity, since the pr coordlnatea 
do not appem again in the rep&. 
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Equatims (17) and (18) are known alternatively as the "charac- 
teristic equations" of a matrdx, u, and are typical of problems in 
which there is &z1 independent parameter, such as vibraticm frequency, 
as well as%& groui, of coordinate dependent variables. The "latent roots," 
or values of the parameter for which there ii3 a 6olutim, and the 
coordinate values associated tith each of these roots are frequently the 
soluticm desired, hence many classical methods xc-e available for 
numerical solutims. Inthe case of thevibratingpropel.lerblade 
represented by the characteristic e uatim 
the matrix, u, em3 critical speeds t 

(17), the latailc roots of 
strictly, reciprocele of critical 

speeda squared)and.themodalcolmms,l+, are the b-t 
ddtitributicms correspondzIng to the natural modes for the critical speeds. 
The lU0ddL rows, K.r, defined by equation (18), are the corresponding 
curvature distributicms, as will be shown. 

Humericalmethods for detemingthemodal mm, columprr, and 
roots are described in detail in reference 1. Ih the case at hand, the 
labor involved can be reduced by deriving a relation between the modsl 
row end column, first forming the transposed of equatfcm (17). 

kr'[&I - it) = 0 

Equation (14) stated, 

Since 

0' = 61, S' = rl, 'pp' = t+ p' e p, 7) = 'I 

and 
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whence 

or 
. 

kr$'ILfe)-l(~ -d = C 

Thus, the modal row is rela.tea to the nloaal colllT.un by the equation, 

15 

(20) 

which share that the modal row fs a cu~~a-bure dlstri-butim, since the 
modal column, from which it is here derived, satisfies the equation for 
the elastic moment. 

For small changes In blade angle, the chsnges in critical speeds 
canbe foundwithoutrecalculating u for anewblade m&e. Apsxtial 
deriv-ati-ve of the characteristic equation (17) may be formed as follows: 
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Premiltip&tng by Kr, the secmd term vanishes, leaving 

whence 

Now examine u and find its derivative. 

Since 

and ae = d$ 

ae -sine ap= L 

-&OS 8 COB 8 1 f ad= -sine aa 

sin 8 

I COB 8 

COB 2 

1 -8tie 
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Let 

17 

0 I 
J= 

[ I -1 0 

then 

Substituting these derivatives into equation (22), 

t 
Prermltiply by + end postmultiply by Q, so that 

and by m&Ing use of the characteristic equation again, u is e-ted. 

The second term csn be s3mplified by notfng, from equatfon (20), 
; that 
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whence 

But, since this ii3 a scalex equation, the elements in any termmay be 
transposed, so that 

and 

kr'Jler' =--rEJk, 

whence, eqmtian (21) becomes 

As a last refinement, note that 

$2 = (K$r)-l"rJkr 
r 

(23) 

(24) 

This relatfonship m&es it possible to make use of a soluticm, 
obtained for any srbitrsry blade angle, to find the nature of the varfa- 
tion in critical speed with variatims in blade angle, at least for a 
fmallrangeinangle. It is interesting to put this eqmtim Into an 
integral form for the distribut~ed system, by noting the memings of the 
operations indicated by equation (24). The scalar, K$+, is a mm of 
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the products of each pair of curvatures end moments endhence represents 
twice the stralnenergy dnanaturalmode, so that, titerras of scslar 

. 

moment elements, Mf Gd Me, there may be written- 

Furthermore, the operator, 
aud edgewise (f end e 

J, has the effect of titerchang3ng 
subscript) quantities, so that 

fletwise 

and the changes In critical speed msy therefore be expressed as a function 
ofamallchenge inblade snglebythefolJx&ng scalar equationof 
definite integrals evaluated at the critical speed: 

(25) 

This useful relationship might have been obtained by other methods, 
but the presentation here given has seemed the most strad&tformrd to 
the writer. 

The foregoing analysis has provided sever&l equations fn mat&x form 
which may be employed ddrectly in numerical work. After forming the 
basic arrays of physical quentfties and canibining them-to obtain the 
matrix, U, and the CO~URBI, Mpe (4 , equation (15) may be solved for the 
vibratory bending moments at the IL blade stations by methods such as 
proposed by Aitken (reference 2) in order to fdnd the nonresamnt response 
of the propeller to the applied air forces at a given frequency order. 
W the critical speeds are desk, the characteristic equation (17), may 
be solved by repeated premu$tiplication of-an arbitrary colmm, as 
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descrfbed In reference 1, end by this means the b-t distribu- 
tion of the normal mode is also obtained. The normal mode curvature 
distribution my be found by sLmilsr postmiLtiplics.tion of an arbitrary 
row, according to the chsracteristic equstion (181, or directly from the 
moment columu, by equation (20). The critical speeds, normal mode 
columcs snd rows, and the applied air mcments may be gathered together in 
equation (16) in order to express the resultant vibratory bending moments 
as functions of rotational speed. 

For numerical purposes, it is often convanient to expand equaticm (16) 
in s form which will converge more rapidly, thus requiring the cs.lculation 
of fewer mode shspes. It is eesily shown that 

Mfe = Mpe 

which follows frcm observing that 

(26) 

2n 
lim Mfe= > M (d 

n2+0 
= Mpe(") 

r=l 
b-4 

Since the matrix, u, Includes au arbitrary blsde angle, the 
nuruerfcsl solution in terms of normal modes snd frequencies yields 
complete informatim at a even frequency order only for a single blade 
engle; however, for smsll vsristims in blade angle, equation (24) msy 
be used to determine the effect cm critical speeds without godng through 
s completely new solution. 

In computing critical speeds for s fixed vibration order, dt.should 
be noted that some of the 2u latent roots, h, msy be negative. In the 
particulsr c&se of first-order vibratims, not more then ahe of these 
roots will, in generti, be posftfve. The occurrence of negative roots r 
-lies Imaginsry critfcal speeds, which are difficult to picture ss such, - 
but may sppeez more logical if treated as the positive critical speeds 
which would exist mre the centrifugal forces end inertia forces to be 
reversed. This condition is probably more easily understandable for the 
special case of P = 0, when the negative roots comespoud to critical 
speeds for several modes of buckling under reversed centrif’ugal forces. 
Figure 4 presents s sketch of the natural frequency spectrum of s propeller 
ss s function of rotstionsl speed, using frequency sqmed along each . 
axis, so that the negative roots appear as intersections in the third 
quadre3lt. -. 
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STODOIA'S METIEOD 

In the calculation of naturel frequencies in problems Involving the 
vibration of beame, the Stodola process is often employed. This is 
nor@ly a method by which a deflection curve is assumed end used to 
calculate the inertia loadfng, &ich is then SucceSsively integrated 
alongthelength of thebeaminorderto obtainthe sheer, momant, slope, 
end a new deflection shape. The new deflection curve is then carried 
through the same process again, and repeated iterations finally converge 
on the true mode shape, with en increase in amplitude through each itera- 
tion in proportion to the lowest natural frequency. After solving for 
the lowest mode end frequency, higher m&es can also be found, but since 
there is a tendency for the fundamental mode to became more prominent 
through each -Iteration, it is necessary to employ the orthoganality 
relations in order to eMm3nate the unwanted mode or modes in each 
hi&er mode solution. 

The Stodola process could also be used tith en aeeumed manent distribu- 
tion, carrying through each serfes of integrations to obtain an -roved 
moment mode shape, end it is interesting to note that the solution of the 
matrix equation (17) for its latent.roots andmodal columns is very closely 
related to this type of Stodola process. preWltiplic&tion of an 
arbitrary moment column by u, upon examination of the definition of u, 
equation (lb), Includes in a lumped form the severel steps of successively 
Integrating the curvature, slope, low, end she-, including centrif- 
ugal tensicm effects, to obtain an improved mcment distribution, end the 
compezisan'of successive mode shapes, after convergence has been attained, 
fields the lowest natural frequency fn the form of the dominsnt l&tent 
root. The process of modifying the u-matrix In order to el%minete the 
dominant mode end permit solution for the subdcrminan t root, when cmx- 
fullyem d is found to provide a new matrix which represents the same 
series of operations during each iteration, tith the addition of an 
"ort,hogonalizI.ng" step included in each iteration. Use of the Stodola . 
process II+ this manner has long since been successfully accom&ished at 
least In the sanewhat sQ~@ified case of a nanrotatIng untwisted beam 
(reference 3). The rotating, twisted propeller blade requires numerical 
calculations of ledger volume end hence greater dffficulty, but no new 
principles are Involved. 

The matrix method of calculaticm, therefore, is not basically n(Jpel, 
but represents a technique for organizin@; in an efficient manner the 
multitude of operations Involved in a l.ez~ca3.e numerical calculation. 
One of its strcagest attractions is that it permits a proper perspective 
to be matitained not only In the analytical phaees of the problem but 
also.throu@ut the numerical work. 
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Figure l.- Equilibrium of forces and momenta on a tierential element--in 
plane of rotation (radial centrifugal field). 
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‘Figure 2.- Orientation of twisted (fee) coordinates in relation to untwisted 
(pr) coordinates. 
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Figure 3.- ~omenckhure of segmented blade. 
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Figure 4.- Frequency spectrum of rotating propeller. 
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